Аналоговый сигнал – это функция непрерывного аргумента (времени). Если график периодически прерывается, как происходит в последовательности импульсов, к примеру, уже говорят о некой дискретности пачки.

История появления термина

Вычислительная техника

Если вчитаться, нигде не написано, откуда пришло в мир определение — аналоговый. На западе термин употреблялся с сороковых годов профессионалами вычислительной техники. Именно в период Второй мировой войны появились первые компьютерные системы, называемые цифровыми. И для различения пришлось придумать новые эпитеты.

В мир бытовой техники понятие аналоговый вошло лишь в начале 80-х, когда на свет вышли первые процессоры Intel, а мир игрался в игрушки на ZX-Spectrum, эмулятор для устройств сегодня возможно раздобыть в интернете. Геймплей требовал необыкновенного упорства, сноровки и отменной реакции. Наравне с детворой собирали ящики и били вражеских инопланетян и взрослые. Современные игры намного уступают первым пташкам, захватившим на некоторое время умы игроков.

Звукозапись и телефония

К началу 80-х на свет стала появляться поп-музыка в электронной обработке. Музыкальный телеграф представлен на суд публики в 1876 году, не обрёл признания. Популярная музыка нравится аудитории в широком понимании слова. Телеграф умел издавать единственную ноту, передавать на расстояние, где та воспроизводилась динамиком специальной конструкции. И хотя Битлз использовали при создании Сержанта Пеппера электронный орган, синтезатор вошёл в обиход в поздние 70-е годы. По-настоящему популярным и цифровым инструмент стал уже в середине 80-х: вспомним Modern Talking. Ранее использовались синтезаторы на аналоговых схемах, начиная с Novachord в 1939 году.

Итак, потребности в различении аналоговых и цифровых технологий у рядового гражданина не возникало, пока последние не вошли прочно в обиход. Слово аналоговый стало достоянием публики с начала 80-х. Что касается происхождения термина, традиционно считается, что указатель заимствован из телефонии, позже перекочевал в звукозапись. Аналоговые колебания непосредственно подаются на динамик, немедленно раздается голос. Сигнал похож на человеческую речь, становится электрическим аналогом.

Если подать на динамик цифровой сигнал, раздастся непередаваемая какофония из нот разной тональности. Эта «речь» знакома любому, кто грузил в память компьютера программы и игры с магнитной ленты. На человеческую не походит, потому что цифровая. Что касается дискретного сигнала, в простейших системах он подается прямо на динамик, служащий интегратором. Удача или неуспех предприятия всецело зависят от правильно подобранных параметров.

Одновременно термин фигурировал в звукозаписи, где непосредственно с микрофона музыка и голос шли на ленту. Магнитная запись стала аналогом реальных артистов. Виниловые пластинки подобны музыкантам и поныне считаются лучшим носителем для любых композиций. Хотя показывают ограниченный срок службы. CD нынче часто содержат цифровой звук, расшифровываемый декодером. Согласно Википедии, новая эра началась в 1975 году (en.wikipedia.org/wiki/History_of_sound_recording).

Электрические измерения

В аналоговом сигнале наблюдается пропорциональность между напряжением, либо током и откликом на воспроизводящем устройстве. Термин тогда сочтём произошедшим от греческого analogos. Что означает пропорциональный. Впрочем, сравнение аналогично указанному выше: сигнал подобен голосу, воспроизводимому колонками.

Вдобавок в технике применяется для обозначения аналоговых сигналов иной термин – непрерывные. Что соответствует данному выше определению.

Общая информация

Энергия сигнала

Как следует из определения, аналоговый сигнал обладает бесконечной энергией, не ограничен во времени. Посему его параметры усредняются. К примеру, 220 В, присутствующие в розетки называются действующим значением по указанной причине. Поэтому применяют действующие (усредненные на некотором интервале) значения. Уже понятно, что в розетке присутствует аналоговый сигнал частоты 50 Гц.

Когда речь заходит о дискретности, применяют конечные значения. К примеру, при покупке электрошокера нужно убедиться, что энергия удара не превосходит частного значения, измеряемого в джоулях. В противном случае возникнут неприятности с использованием либо при досмотре. Поскольку, начиная с конкретного значения энергии, электрошокер применяется лишь спецподразделениями, с установленным верхним лимитом. Прочее – противозаконно в принципе, способно повлечь смертельные исход при применении.

Энергия импульса находится перемножением тока и напряжения на длительность. И это показывает конечность параметра для дискретных сигналов. В технике встречаются и цифровые последовательности. От дискретного цифровой сигнал отличается жестко заданными параметрами:

  1. Длительность.
  2. Амплитуда.
  3. Наличие двух заданных состояний: 0 и 1.
  4. Машинные биты 0 и 1 складываются в заранее оговоренные и понятные участникам слова (язык ассемблера).

Взаимное преобразование сигналов

Дополнительным определением аналогового сигнала становится его кажущаяся случайность, отсутствие видимых правил, либо схожесть с некими природными процессами. К примеру, синусоида может описать вращение Земли вокруг Солнца. Это аналоговый сигнал. В теории цепей и сигналов синусоида представляется вращающимся вектором амплитуды. А фаза тока и напряжения отличается – это два разных вектора, порождая реактивные процессы. Что наблюдается в индуктивностях и конденсаторах.

Из определения следует, что аналоговый сигнал легко преобразуется в дискретный. Любой импульсный блок питания нарезает входное напряжение из розетки на пачки. Следовательно, занимается преобразованием аналогового сигнала частоты 50 Гц в дискретные ультразвуковые пачки. Варьируя параметры нарезки, блок питания подстраивает выходные величины под требования электрической нагрузки.

Внутри приемника радиоволн с амплитудным детектором происходит обратный процесс. После выпрямления сигнала на диодах образуются импульсы различной амплитуды. Информация заложена в огибающей такого сигнала, линии, соединяющей вершины посылки. Преобразованием дискретных импульсов в аналоговую величину занимается фильтр. Принцип основан на интегрировании энергии: в период наличия напряжения возрастает заряд конденсатора, потом, в промежутке между пиками, ток образуется за счет накопленного ранее запаса электронов. Полученная волна подается на усилитель низких частот, позднее на динамики, где результат слышен окружающим.

Цифровой сигнал кодируется по-другому. Там амплитуда импульса заложена в машинной слове. Оно состоит из единиц и нулей, требуется декодирование. Операцией занимаются электронные устройства: графический адаптер, программные продукты. Каждый качал из интернета K-Lite кодеки, это тот случай. Драйвер занимается расшифровкой цифрового сигнала и преобразованием для выдачи на колонки и дисплей.

Не нужно спешить с путаницей, когда адаптер называют 3-D ускорителем и наоборот. Первый лишь преобразует поданный сигнал. К примеру, за цифровым входом DVI всегда находится адаптер. Он занимается лишь преобразованием цифр из единиц и нулей для отображения на матрице экрана. Извлекает информацию о яркости и значениях пикселей RGB. Что касается 3D-ускорителя, устройство в составе вправе (но не обязано) содержать адаптер, но главной задачей становятся сложные вычисления для построения трёхмерных изображений. Подобный приём позволяет разгрузить центральный процессор и ускорить работу персонального компьютера.

Из аналогового в цифровой сигнал преобразуется в АЦП. Это происходит программно либо внутри микросхемы. Отдельные системы сочетают оба способа. Процедура начинается взятием отсчётов, умещающихся внутри заданной области. Каждый, преобразуясь, становится машинным словом, содержащим вычисленную цифру. Потом отсчёты пакуются посылками, становится возможной пересылка другим абонентам сложной системы.

Правила дискретизации нормируются теоремой Котельникова, показывающей максимальную частоту взятия замера. Чаще отсчёт брать запрещается, поскольку происходит потеря информации. Упрощённо считают достаточным шестикратное превышение частоты отсчётов над верхней границей спектра сигнала. Больший запас считается дополнительным преимуществом, гарантирующим хорошее качество. Любой видел указания частоты дискретизации звукозаписи. Обычно параметр выше 44 кГц. Причиной служат особенности человеческого слуха: верхняя граница спектра 10 кГц. Следовательно, частоты дискретизации 44 кГц хватит для посредственной передачи звучания.

Отличие дискретного и цифрового сигнала

Наконец, человек из окружающего мира воспринимает обычно аналоговую информацию. Если глаз видит мигающий огонёк, периферическое зрение ухватит окружающий пейзаж. Следовательно, конечный эффект не видится дискретным. Разумеется, возможно попытаться создать иное восприятие, но это сложно и окажется целиком искусственным. На этом основано применение азбуки Морзе, состоящей из легко различимых на фоне помех точек и тире. Дискретные удары телеграфного ключа сложно спутать с естественными сигналами, даже при наличии сильного шума.

Аналогичным образом цифровые линии введены в технике для исключения помех. Любой любитель видео пытается раздобыть кодированную копию фильма в максимальном разрешении. Цифровая информация способна передаваться на дальние дистанции без малейших искажений. Помощниками становятся известные на обеих сторонах правила для формирования заранее оговорённых слов. Порой в цифровой сигнал закладывается избыточная информация, позволяющая исправлять или замечать ошибки. Этим устраняется неправильное восприятие.

Импульсные сигналы

Если говорить точнее, дискретные сигналы задаются отсчётами в определённые моменты времени. Понятно, что такая последовательность в реальности не формируется по причине, что фронт и спад имеют конечную длину. Импульс не передаётся мгновенно. Потому спектр последовательности не считается дискретным. Значит, сигнал так называть нельзя. На практике выделяют два класса:

  1. Аналоговые импульсные сигналы – спектр которых находится преобразованием Фурье, следовательно, непрерывный, по крайней мере, на отдельных участках. Результат действия напряжения или тока на цепь находится операцией свёртки.
  2. Дискретные импульсные сигналы показывают и спектр дискретный, операции с ними проводятся через дискретные преобразования Фурье. Следовательно, применяется и свёртка дискретная.

Эти уточнения важны для буквоедов, прочитавших, что импульсные сигналы бывают аналоговыми. Дискретные получили название по особенностям спектра. Термин аналоговые применяется для различения. Эпитет непрерывные применим, о чем уже сказано выше, и в связи с особенностями спектра.

Уточнение: строго дискретным считается исключительно спектр бесконечной последовательности импульсов. Для пачки гармонические составляющие всегда расплывчатые. Такой спектр напоминает последовательность импульсов, модулированных по амплитуде.

Я рассказывал о цифровых сигналах. Чем же так хороши эти цифровые сигналы? Как это бы странно не звучало, но цифровые сигналы по своей природе являются аналоговыми, так как передаются путем изменения значения напряжения или тока, но передают сигналы с ранее оговоренными уровнями. По своей сути, они являются дискретными сигналами. А что означает слово “дискретный”? Дискретный – это значит состоящий из отдельных частей, раздельный, прерывистый. Цифровые сигналы относятся как раз к дискретным сигналам, так как имеют только ДВА СОСТОЯНИЯ: «активно» и «не активно» - «есть напряжение/ток» и «нет напряжения/тока».

Главный плюс цифровых сигналов в том, что их проще передавать и обрабатывать. Для передачи чаще всего используют напряжение. Поэтому, принято два состояния: напряжение близко к нулю (менее 10% от значения напряжения) и напряжение близко к напряжению питания (более 65% от значения). Например, при напряжении питания схемы 5 Вольт мы получаем сигнал с напряжением 0,5 Вольт - «ноль», если же 4,1 Вольта - «единица».

Последовательный метод передачи информации

Есть просто два провода, источник электрического сигнала и приемник электрического сигнала, которые цепляются к этим проводам.

Это ФИЗИЧЕСКИЙ УРОВЕНЬ.

Как мы уже сказали, по этим двум проводам мы можем передавать только два сигнала: «есть напряжение/ток» и «нет напряжения/тока». Какие способы передачи информации мы можем реализовать?

Самый простой способ – сигнал есть (лампочка горит) – это ЕДИНИЧКА, сигнала нет (лампочка не горит) – это НОЛЬ


Если пораскинуть мозгами, можно придумать еще несколько различных комбинаций. Например, широкий импульс принять за единичку, а узкий – за ноль:


Или даже вообще взять за единичку и ноль фронт и срез импульса. Внизу рисунок, если подзабыли, что такое фронт и срез импульса.


А вот и практическая реализация:


Да можно хоть сколько придумать различных комбинаций, если “получатель” и “отправитель” согласуют прием и передачу . Здесь я привел просто самые популярные способы передачи цифрового сигнала. То есть все эти способы и есть ПРОТОКОЛЫ. И их, как я уже сказал, можно напридумывать очень много.

Скорость обмена данными

Представьте себе картину… Студенты, идет лекция… Преподаватель диктует лекцию, а студенты ее записывают


Но если преподаватель очень быстро диктует лекцию и в придачу эта лекция по физике или матанализу, то в результате получаем:


Почему же так произошло?

С точки зрения цифровой передачи данных, можно сказать, что скорость обмена данными между «Отправителем» и «Получателем» разная. Поэтому, может быть реальна ситуация, когда «Получатель» (студент) не в состоянии принять данные от «Отправителя» (преподавателя) из-за несоответствия скорости передачи данных: скорость передачи может быть выше или ниже той, на которую настроен приемник (студент).

Данная проблема в разных стандартах последовательной передачи данных решается по-разному:

  • предварительная договоренность о скорости передачи данных (договориться с преподавателем, чтобы диктовал лекцию медленнее или чуть быстрее);
  • перед передачей информации «Отправитель» передает некую служебную информацию, используя которую «Получатель» подстраивается под «Отправителя» (Преподаватель: “Кто не запишет эту лекцию полностью, тот не получит зачет”)

Чаще всего, используется первый способ: в устройствах связи заранее устанавливается необходимая скорость обмена данными. Для этого используется тактовый генератор, который вырабатывает импульсы для синхронизации всех узлов устройства, а также для синхронизации процесса связи между устройствами.

Управление потоком

Также возможна ситуация, когда «Получатель»(студент) не готов принимать передаваемые «Отправителем»(преподавателем) данные по какой-либо причине: занятость, неисправность и др.


Решается эта проблема различными методами:

1) На уровне протоколов . Например, в протоколе обмена оговорено: после передачи «Отправителем» служебного сигнала «начало передачи данных» в течение определенного времени «Получатель» обязан подтвердить принятие этого сигнала путем передачи специального служебного сигнала «готовность к приему». Данный способ называют «программным управлением потоком» – «Soft»


2) На физическом уровне - используются дополнительные каналы связи, по которым «Отправитель» ДО передачи информации запрашивает у «Получателя» о его готовности к приему). Такой способ называют «аппаратным управлением потоком» – «Hard»;


Оба метода очень распространены. Иногда они используются одновременно: и на физическом уровне, и на уровне протокола обмена.

При передаче информации важно засинхронизировать работу передатчика и приемника . Способ установки режима связи между устройствами называют «синхронизацией». Только в этом случае «Получатель» может правильно (достоверно) принять переданное «Отправителем» сообщение.

Режимы связи

Симплексная связь.

В этом случае Получатель может только принимать сигналы от отправителя и никак не может на него повлиять. Это в основном телевидение или радио. Мы можем их только или смотреть или слушать.


Полудуплексная связь.

В этом режиме и отправитель и получатель могут передавать друг другу сигналы поочередно, если канал свободен. Отличный пример полудуплексной связи – это рации. Если оба абонента будут трещать каждый в свою рацию одновременно, то никто никого не услышит.

– Первый, первый. Я второй. Как слышно?

– Слышу вас нормально, отбой!


Сигнал может посылать только отправитель, в этом случае получатель его принимает. Либо сигнал может отправлять получатель, а в этом случае отправитель его получает. То есть и отправитель и получатель имеют равные права на доступ к каналу (линии связи). Если они сразу оба будут передавать сигнал в линию, то, как я уже сказал, ничего из этого не получится.

Дуплексная связь.

В этом режиме и прием и передача сигнала могут вестись сразу в двух направлениях одновременно . Яркий тому пример – разговор по мобильному или домашнему телефону, или разговор в Skype.


О природе сигналов обыватель не задумывается, а вот о разнице между аналоговым и цифровым вещанием или форматами — иногда приходится. По умолчанию считается, что аналоговые технологии уходят в прошлое, и вскоре будут полностью заменены на цифровые. Стоит знать, от чего мы отказываемся в угоду новым веяниям.

Аналоговый сигнал — сигнал данных, описываемый непрерывными функциями времени, то есть амплитуда колебаний его может принимать любые значения в пределах максимума.

Цифровой сигнал — сигнал данных, описываемый дискретными функциями времени, то есть амплитуда колебаний принимает значения только строго определенные.

На практике это позволяет говорить о том, что аналоговый сигнал сопровождается большим количеством помех, тогда как цифровой их успешно отфильтровывает. Последний же способен восстанавливать исходные данные. Кроме того, непрерывный аналоговый сигнал часто несет в себе много лишней информации, что приводит к его избыточности — несколько цифровых сигналов можно передать вместо одного аналогового.

Если говорить о телевидении, а именно эта сфера своим переходом на “цифру” волнует большинство потребителей, то можно считать аналоговый сигнал совершенно себя изжившим. Однако пока что аналоговые сигналы принимает любая предназначенная для этого техника, а цифровой требует специальной. Правда, с распространением “цифры” аналоговых телевизоров все меньше и спрос на них катастрофически уменьшается.

Еще одна важная характеристика сигнала — безопасность. В этом отношении аналоговый демонстрирует полную беззащитность перед влияниями или вторжениями извне. Цифровой же шифруется посредством присвоения ему кода из радиоимпульсов, так что любое вмешательство исключено. На большие расстояния цифровые сигналы передавать сложно, потому используется схема модуляции-демодуляции.

Выводы сайт

  1. Аналоговый сигнал непрерывен, цифровой — дискретен.
  2. При передаче аналогового сигнала выше риск забивания канала помехами.
  3. Аналоговый сигнал избыточен.
  4. Цифровой сигнал фильтрует помехи и восстанавливает исходные данные.
  5. Цифровой сигнал передается в зашифрованном виде.
  6. Несколько цифровых сигналов можно послать вместо одного аналогового.

Очень часто мы слышим такие определения, как «цифровой» или «дискретный» сигнал, в чем его отличие от «аналогового»?

Суть различия в том, что аналоговый сигнал непрерывный во времени (голубая линия), в то время как цифровой сигнал состоит из ограниченного набора координат (красные точки). Если все сводить к координатам, то любой отрезок аналогового сигнала состоит из бесконечного количества координат.

У цифрового сигнала координаты по горизонтальной оси расположены через равные промежутки времени, в соответствии с частотой дискретизации. В распространенном формате Audio-CD это 44100 точек в секунду. По вертикали точность высоты координаты соответствует разрядности цифрового сигнала, для 8 бит это 256 уровней, для 16 бит = 65536 и для 24 бит = 16777216 уровней. Чем выше разрядность (количество уровней), тем ближе координаты по вертикали к исходной волне.

Аналоговыми источниками являются: винил и аудиокассеты. Цифровыми источниками являются: CD-Audio, DVD-Audio, SA-CD (DSD) и файлы в WAVE и DSD форматах (включая производные APE, Flac, Mp3, Ogg и т.п.).

Преимущества и недостатки аналогового сигнала

Преимуществом аналогового сигнала является то, что именно в аналоговом виде мы воспринимаем звук своими ушами. И хотя наша слуховая система переводит воспринимаемый звуковой поток в цифровой вид и передает в таком виде в мозг, наука и техника пока не дошла до возможности именно в таком виде подключать плееры и другие источники звука напрямик. Подобные исследования сейчас активно ведутся для людей с ограниченными возможностями, а мы наслаждаемся исключительно аналоговым звуком.

Недостатком аналогового сигнала являются возможности по хранению, передаче и тиражированию сигнала. При записи на магнитную ленту или винил, качество сигнала будет зависеть от свойств ленты или винила. Со временем лента размагничивается и качество записанного сигнала ухудшается. Каждое считывание постепенно разрушает носитель, а перезапись вносит дополнительные искажения, где дополнительные отклонения добавляет следующий носитель (лента или винил), устройства считывания, записи и передачи сигнала.

Делать копию аналогового сигнала, это все равно, что для копирования фотографии ее еще раз сфотографировать.

Преимущества и недостатки цифрового сигнала

К преимуществам цифрового сигнала относится точность при копировании и передачи звукового потока, где оригинал ничем не отличается от копии.

Основным недостатком можно считать то, что сигнал в цифровом виде является промежуточной стадией и точность конечного аналогового сигнала будет зависеть от того, насколько подробно и точно будет описана координатами звуковая волна. Вполне логично, что чем больше будет точек и чем точнее будут координаты, тем более точной будет волна. Но до сих пор нет единого мнения, какое количество координат и точность данных является достаточным для того, что бы сказать, что цифровое представление сигнала достаточно для точного восстановления аналогового сигнала, неотличимого от оригинала нашими ушами.

Если оперировать объемами данных, то вместимость обычной аналоговой аудиокассеты составляет всего около 700-1,1 Мб, в то время как обычный компакт диск вмещает 700 Мб. Это дает представление о необходимости носителей большой емкости. И это рождает отдельную войну компромиссов с разными требованиями по количеству описывающих точек и по точности координат.

На сегодняшний день считается вполне достаточным представление звуковой волны с частотой дискретизации 44,1 кГц и разрядности 16 бит. При частоте дискретизации 44,1 кГц можно восстановить сигнал с частотой до 22 кГц. Как показывают психоакустические исследования, дальнейшее повышение частоты дискретизации мало заметно, а вот повышение разрядности дает субъективное улучшение.

Как ЦАП строят волну

ЦАП – это цифро-аналоговый преобразователь, элемент, переводящий цифровой звук в аналоговый. Мы рассмотрим поверхностно основные принципы. Если по комментариям будет виден интерес более подробно рассмотреть ряд моментов, то будет выпущен отдельный материал.

Мультибитные ЦАП

Очень часто волну представляют в виде ступенек, что обусловлено архитектурой первого поколения мультибитных ЦАП R-2R, работающих аналогично переключателю из реле.

На вход ЦАП поступает значение очередной координаты по вертикали и в каждый свой такт он переключает уровень тока (напряжения) на соответствующий уровень до следующего изменения.

Хотя считается, что ухо человека слышит не выше 20 кГц, и по теории Найквиста можно восстановить сигнал до 22 кГц, остается вопрос качества этого сигнала после восстановления. В области высоких частот форма полученной «ступенчатой» волны обычно далека от оригинальной. Самый простой выход из ситуации – это увеличивать частоту дискретизации при записи, но это приводит к существенному и нежелательному росту объема файла.

Альтернативный вариант – искусственно увеличить частоту дискретизации при воспроизведении в ЦАП, добавляя промежуточные значения. Т.е. мы представляем путь непрерывной волны (серая пунктирная линия), плавно соединяющий исходные координаты (красные точки) и добавляем промежуточные точки на этой линии (темно фиолетовые).

При увеличении частоты дискретизации обычно необходимо повышать и разрядность, чтобы координаты были ближе к аппроксимированной волне.

Благодаря промежуточным координатам удается уменьшить «ступеньки» и построить волну ближе к оригиналу.

Когда вы видите функцию повышения частоты с 44.1 до 192 кГц в плеере или внешнем ЦАП, то это функция добавления промежуточных координат, а не восстановления или создание звука в области выше 20 кГц.

Изначально это были отдельные SRC микросхемы до ЦАП, которые потом перекочевали непосредственно в сами микросхемы ЦАП. Сегодня можно встретить решения, где к современным ЦАП добавляется такая микросхема, это сделано для того, чтобы обеспечить альтернативу встроенным алгоритмам в ЦАП и порой получить еще более лучший звук (как например это сделано в Hidizs AP100).

Основной отказ в индустрии от мультибитных ЦАП произошел из-за невозможности дальнейшего технологического развития качественных показателей при текущих технологиях производства и более высокой стоимости против «импульсных» ЦАП-ов с сопоставимыми характеристиками. Тем не менее, в Hi-End продуктах предпочтение отдают зачастую старым мультибитным ЦАП-ам, нежели новым решениям с технически более хорошими характеристиками.

Импульсные ЦАП

В конце 70-тых широкое распространение получил альтернативный вариант ЦАП-ов, основанный на «импульсной» архитектуре – «дельта-сигма». Технология импульсных ЦАП-ов стала возможной появлению сверх-быстрых ключей и позволила использовать высокую несущую частоту.

Амплитуда сигнала является средним значением амплитуд импульсов (зеленым показаны импульсы равной амплитуды, а белым итоговая звуковая волна).

Например последовательность в восемь тактов пяти импульсов даст усредненную амплитуду (1+1+1+0+0+1+1+0)/8=0,625. Чем выше несущая частота, тем больше импульсов попадает под сглаживание и получается более точное значение амплитуды. Это позволило представить звуковой поток в однобитном виде с широким динамическим диапазоном.

Усреднение возможно делать обычным аналоговым фильтром и если такой набор импульсов подать напрямую на динамик, то на выходе мы получим звук, а ультра высокие частоты не будут воспроизведены из-за большой инертности излучателя. По этому принципу работают ШИМ усилители в классе D, где плотность энергии импульсов создается не их количеством, а длительностью каждого импульса (что проще в реализации, но невозможно описать простым двоичным кодом).

Мультибитный ЦАП можно представить как принтер, способный наносить цвет пантоновыми красками. Дельта-Сигма – это струйный принтер с ограниченным набором цветов, но благодаря возможности нанесению очень мелких точек (в сравнении с пантовым принтером), за счет разной плотности точек на единицу поверхности дает больше оттенков.

На изображении мы обычно не видим отдельных точек из-за низкой разрешающей способности глаза, а только средний тон. Аналогично и ухо не слышит импульсов по отдельности.

В конечном итоге при текущих технологиях в импульсных ЦАП можно получить волну, близкую к той, что теоретически должна получится при аппроксимации промежуточных координат.

Надо отметить, что после появления дельта-сигма ЦАП исчезла актуальность рисовать «цифровую волну» ступеньками, т.к. так ступеньками волну современные ЦАП не строят. Правильно дискретный сигнал строить точками соединенной плавной линией.

Являются ли идеальными импульсные ЦАП?

Но на практике не все безоблачно, и существует ряд проблем и ограничений.

Т.к. подавляющее количество записей сохранено в многоразрядном сигнале, то перевод в импульсный сигнал по принципу «бит в бит» требует излишне высокую несущую частоту, которую современные ЦАП не поддерживают.

Основной функцией современных импульсных ЦАП является перевод многоразрядного сигнала в однобитный с относительно невысокой несущей частотой с прореживанием данных. В основном именно эти алгоритмы и определяют конечное качество звучания импульсных ЦАП-ов.

Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков. Такие ЦАП называются мультибитными дельта-сигма.

Сегодня импульсные ЦАП-ы получили второе дыхание в быстродействующих микросхемах общего назначения в продуктах компаний NAD и Chord за счет возможности гибко программировать алгоритмы преобразования.

Формат DSD

После широкого распространения дельта-сигма ЦАП-ов вполне логичным было и появления формата записи двоичного кода напрямую дельта-сигма кодировке. Этот формат получил название DSD (Direct Stream Digital).

Широкого распространения формат не получил по нескольким причинам. Редактирование файлов в этом формате оказалось излишне ограниченным: нельзя микшировать потоки, регулировать громкость и применять эквализацию. А это значит, что без потери качества можно лишь архивировать аналоговые записи и производить двухмикрофонную запись живых выступлений без последующей обработки. Одним словом – денег толком не заработать.

В борьбе с пиратством диски формата SA-CD не поддерживались (и не поддерживаются до сих пор) компьютерами, что не позволяет делать их копии. Нет копий – нет широкой аудитории. Воспроизвести DSD аудиоконтент можно было только с отдельного SA-CD проигрывателя с фирменного диска. Если для PCM формата есть стандарт SPDIF для цифровой передачи данных от источника к отдельному ЦАП, то для DSD формата стандарта нет и первые пиратские копии SA-CD дисков были оцифровками с аналоговых выходов SA-CD проигрывателей (хоть ситуация и кажется глупой, но на деле некоторые записи выходили только на SA-CD, либо та же запись на Audio-CD специально была сделана некачественно для продвижения SA-CD).

Переломный момент произошел с выходом игровых приставок SONY, где SA-CD диск до воспроизведения автоматически копировался на жесткий диск приставки. Этим воспользовались поклонники формата DSD. Появление пиратских записей простимулировало рынок на выпуск отдельных ЦАП для воспроизведения DSD потока. Большинство внешних ЦАП с поддержкой DSD на сегодняшний день поддерживает передачу данных по USB используя формат DoP в виде отдельного кодирования цифрового сигнала через SPDIF.

Несущие частоты для DSD сравнительно небольшие, 2.8 и 5.6 МГц, но этот звуковой поток не требует никаких преобразований с прореживанием данных и вполне конкурентно-способен с форматами высокого разрешения, такими как DVD-Audio.

На вопрос что лучше, DSP или PCM однозначного ответа нет. Все упирается в качество реализации конкретного ЦАП и таланта звукорежиссера при записи конечного файла.

Общий вывод

Аналоговый звук – это то, что мы слышим и воспринимаем, как окружающий мир глазами. Цифровой звук, это набор координат, описывающих звуковую волну, и который мы напрямую услышать не можем без преобразования в аналоговый сигнал.

Аналоговый сигнал, записанный напрямую на аудиокассету или винил нельзя без потери качества перезаписать, в то время как волну в цифровом представлении можно копировать бит в бит.

Цифровые форматы записи являются постоянным компромиссом между количеством точностью координат против объема файла и любой цифровой сигнал является лишь приближением к исходному аналоговому сигналу. Однако при этом разный уровень технологий записи и воспроизведения цифрового сигнала и хранения на носителях для аналогового сигнала дают больше преимуществ цифровому представлению сигнала, аналогично цифровой фотокамере против пленочного фотоаппарата.

Цифровой сигнал

Цифровой сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений.

Сигналы представляют собой дискретные электрические или световые импульсы. При таком способе вся емкость коммуникационного канала используется для передачи одного сигнала. Цифровой сигнал использует всю полосу пропускания кабеля. Полоса пропускания - это разница между максимальной и минимальной частотой, которая может быть передана по кабелю. Каждое устройство в таких сетях посылает данные в обоих направлениях, а некоторые могут одновременно принимать и передавать. Узкополосные системы (baseband) передают данные в виде цифрового сигнала одной частоты.

Дискретный цифровой сигнал сложнее передавать на большие расстояния, чем аналоговый сигнал , поэтому его предварительно модулируют на стороне передатчика, и демодулируют на стороне приёмника информации. Использование в цифровых системах алгоритмов проверки и восстановления цифровой информации позволяет существенно увеличить надёжность передачи информации.

Замечание. Следует иметь в виду, что реальный цифровой сигнал по своей физической природе является аналоговым. Из-за шумов и изменения параметров линий передачи он имеет флуктуации по амплитуде, фазе/частоте (джиттер), поляризации. Но этот аналоговый сигнал (импульсный и дискретный) наделяется свойствами числа. В результате для его обработки становится возможным использование численных методов (компьютерная обработка).

Важным свойством цифрового сигнала, определившего его доминирование в современных системах связи, является его способность к полной регенерации вплоть до некоторого порогового отношения сигнал/шум, в то время как аналоговый сигнал удаётся лишь усилить вместе с наложившимися на него шумами. Здесь же кроется и недостаток цифрового сигнала: если цифровой сигнал утопает в шумах, восстановить его невозможно (эффект крутой скалы (англ. )), в то время как человек (не машина) может усвоить информацию из сильно зашумлённого сигнала на аналоговом радиоприёмнике, хотя и с трудом. Если сравнивать сотовую связь аналогового формата (AMPS , NMT) с цифровой связью (GSM, CDMA), то при помехах на цифровой линии из разговора выпадают порой целые слова, а на аналоговой можно вести разговор, хотя и с помехами. Выход из данной ситуации - почаще регенерировать цифровой сигнал, вставляя регенераторы в разрыв линии связи, или уменьшать длину линии связи (например, уменьшать расстояние от сотового телефона до базовой станции (БС), что достигается более частым расположением БС на местности).

Ссылки

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Цифровой сигнал" в других словарях:

    цифровой сигнал - цифровой сигнал: По ГОСТ 22670. Источник: ГОСТ Р 51386 99: Аппаратура радиорелейная. Цепи стыка. Методы измерений параметров … Словарь-справочник терминов нормативно-технической документации

    цифровой сигнал

    цифровой сигнал - данных цифровой сигнал Сигнал данных, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений. [ГОСТ 17657 79 ] цифровой сигнал Для того чтобы представить аналоговый сигнал… … Справочник технического переводчика

    ЦИФРОВОЙ СИГНАЛ, группа электрических или других импульсов в компьютерной или коммуникационной системе. Такие сигналы могут воспроизводить данные, звуки, изображения. Импульсы, выстроенные в ряд цифровых сигналов, воспроизводятся при помощи… … Научно-технический энциклопедический словарь - цифровой сигнал тревоги дискретная тревога цифровой аларм [Интент] Тематики автоматизированные системы Синонимы дискретная тревогацифровой аларм EN digital alarm … Справочник технического переводчика

    Цифровой сигнал электросвязи - сигнал электросвязи, у которого каждый из представляющих параметров (изменения которых отображают изменения передаваемого сообщения) описывается функцией дискретного времени и конечным множеством возможных значений...